tokio/signal/unix.rs
1//! Unix-specific types for signal handling.
2//!
3//! This module is only defined on Unix platforms and contains the primary
4//! `Signal` type for receiving notifications of signals.
5
6#![cfg(unix)]
7#![cfg_attr(docsrs, doc(cfg(all(unix, feature = "signal"))))]
8
9use crate::runtime::scheduler;
10use crate::runtime::signal::Handle;
11use crate::signal::registry::{globals, EventId, EventInfo, Globals, Init, Storage};
12use crate::signal::RxFuture;
13use crate::sync::watch;
14
15use mio::net::UnixStream;
16use std::io::{self, Error, ErrorKind, Write};
17use std::sync::atomic::{AtomicBool, Ordering};
18use std::sync::Once;
19use std::task::{Context, Poll};
20
21pub(crate) type OsStorage = Box<[SignalInfo]>;
22
23impl Init for OsStorage {
24 fn init() -> Self {
25 // There are reliable signals ranging from 1 to 33 available on every Unix platform.
26 #[cfg(not(any(target_os = "linux", target_os = "illumos")))]
27 let possible = 0..=33;
28
29 // On Linux and illumos, there are additional real-time signals
30 // available. (This is also likely true on Solaris, but this should be
31 // verified before being enabled.)
32 #[cfg(any(target_os = "linux", target_os = "illumos"))]
33 let possible = 0..=libc::SIGRTMAX();
34
35 possible.map(|_| SignalInfo::default()).collect()
36 }
37}
38
39impl Storage for OsStorage {
40 fn event_info(&self, id: EventId) -> Option<&EventInfo> {
41 self.get(id).map(|si| &si.event_info)
42 }
43
44 fn for_each<'a, F>(&'a self, f: F)
45 where
46 F: FnMut(&'a EventInfo),
47 {
48 self.iter().map(|si| &si.event_info).for_each(f);
49 }
50}
51
52#[derive(Debug)]
53pub(crate) struct OsExtraData {
54 sender: UnixStream,
55 pub(crate) receiver: UnixStream,
56}
57
58impl Init for OsExtraData {
59 fn init() -> Self {
60 let (receiver, sender) = UnixStream::pair().expect("failed to create UnixStream");
61
62 Self { sender, receiver }
63 }
64}
65
66/// Represents the specific kind of signal to listen for.
67#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
68pub struct SignalKind(libc::c_int);
69
70impl SignalKind {
71 /// Allows for listening to any valid OS signal.
72 ///
73 /// For example, this can be used for listening for platform-specific
74 /// signals.
75 /// ```rust,no_run
76 /// # use tokio::signal::unix::SignalKind;
77 /// # let signum = -1;
78 /// // let signum = libc::OS_SPECIFIC_SIGNAL;
79 /// let kind = SignalKind::from_raw(signum);
80 /// ```
81 // Use `std::os::raw::c_int` on public API to prevent leaking a non-stable
82 // type alias from libc.
83 // `libc::c_int` and `std::os::raw::c_int` are currently the same type, and are
84 // unlikely to change to other types, but technically libc can change this
85 // in the future minor version.
86 // See https://github.com/tokio-rs/tokio/issues/3767 for more.
87 pub const fn from_raw(signum: std::os::raw::c_int) -> Self {
88 Self(signum as libc::c_int)
89 }
90
91 /// Get the signal's numeric value.
92 ///
93 /// ```rust
94 /// # use tokio::signal::unix::SignalKind;
95 /// let kind = SignalKind::interrupt();
96 /// assert_eq!(kind.as_raw_value(), libc::SIGINT);
97 /// ```
98 pub const fn as_raw_value(&self) -> std::os::raw::c_int {
99 self.0
100 }
101
102 /// Represents the `SIGALRM` signal.
103 ///
104 /// On Unix systems this signal is sent when a real-time timer has expired.
105 /// By default, the process is terminated by this signal.
106 pub const fn alarm() -> Self {
107 Self(libc::SIGALRM)
108 }
109
110 /// Represents the `SIGCHLD` signal.
111 ///
112 /// On Unix systems this signal is sent when the status of a child process
113 /// has changed. By default, this signal is ignored.
114 pub const fn child() -> Self {
115 Self(libc::SIGCHLD)
116 }
117
118 /// Represents the `SIGHUP` signal.
119 ///
120 /// On Unix systems this signal is sent when the terminal is disconnected.
121 /// By default, the process is terminated by this signal.
122 pub const fn hangup() -> Self {
123 Self(libc::SIGHUP)
124 }
125
126 /// Represents the `SIGINFO` signal.
127 ///
128 /// On Unix systems this signal is sent to request a status update from the
129 /// process. By default, this signal is ignored.
130 #[cfg(any(
131 target_os = "dragonfly",
132 target_os = "freebsd",
133 target_os = "macos",
134 target_os = "netbsd",
135 target_os = "openbsd",
136 target_os = "illumos"
137 ))]
138 pub const fn info() -> Self {
139 Self(libc::SIGINFO)
140 }
141
142 /// Represents the `SIGINT` signal.
143 ///
144 /// On Unix systems this signal is sent to interrupt a program.
145 /// By default, the process is terminated by this signal.
146 pub const fn interrupt() -> Self {
147 Self(libc::SIGINT)
148 }
149
150 #[cfg(target_os = "haiku")]
151 /// Represents the `SIGPOLL` signal.
152 ///
153 /// On POSIX systems this signal is sent when I/O operations are possible
154 /// on some file descriptor. By default, this signal is ignored.
155 pub const fn io() -> Self {
156 Self(libc::SIGPOLL)
157 }
158 #[cfg(not(target_os = "haiku"))]
159 /// Represents the `SIGIO` signal.
160 ///
161 /// On Unix systems this signal is sent when I/O operations are possible
162 /// on some file descriptor. By default, this signal is ignored.
163 pub const fn io() -> Self {
164 Self(libc::SIGIO)
165 }
166
167 /// Represents the `SIGPIPE` signal.
168 ///
169 /// On Unix systems this signal is sent when the process attempts to write
170 /// to a pipe which has no reader. By default, the process is terminated by
171 /// this signal.
172 pub const fn pipe() -> Self {
173 Self(libc::SIGPIPE)
174 }
175
176 /// Represents the `SIGQUIT` signal.
177 ///
178 /// On Unix systems this signal is sent to issue a shutdown of the
179 /// process, after which the OS will dump the process core.
180 /// By default, the process is terminated by this signal.
181 pub const fn quit() -> Self {
182 Self(libc::SIGQUIT)
183 }
184
185 /// Represents the `SIGTERM` signal.
186 ///
187 /// On Unix systems this signal is sent to issue a shutdown of the
188 /// process. By default, the process is terminated by this signal.
189 pub const fn terminate() -> Self {
190 Self(libc::SIGTERM)
191 }
192
193 /// Represents the `SIGUSR1` signal.
194 ///
195 /// On Unix systems this is a user defined signal.
196 /// By default, the process is terminated by this signal.
197 pub const fn user_defined1() -> Self {
198 Self(libc::SIGUSR1)
199 }
200
201 /// Represents the `SIGUSR2` signal.
202 ///
203 /// On Unix systems this is a user defined signal.
204 /// By default, the process is terminated by this signal.
205 pub const fn user_defined2() -> Self {
206 Self(libc::SIGUSR2)
207 }
208
209 /// Represents the `SIGWINCH` signal.
210 ///
211 /// On Unix systems this signal is sent when the terminal window is resized.
212 /// By default, this signal is ignored.
213 pub const fn window_change() -> Self {
214 Self(libc::SIGWINCH)
215 }
216}
217
218impl From<std::os::raw::c_int> for SignalKind {
219 fn from(signum: std::os::raw::c_int) -> Self {
220 Self::from_raw(signum as libc::c_int)
221 }
222}
223
224impl From<SignalKind> for std::os::raw::c_int {
225 fn from(kind: SignalKind) -> Self {
226 kind.as_raw_value()
227 }
228}
229
230pub(crate) struct SignalInfo {
231 event_info: EventInfo,
232 init: Once,
233 initialized: AtomicBool,
234}
235
236impl Default for SignalInfo {
237 fn default() -> SignalInfo {
238 SignalInfo {
239 event_info: EventInfo::default(),
240 init: Once::new(),
241 initialized: AtomicBool::new(false),
242 }
243 }
244}
245
246/// Our global signal handler for all signals registered by this module.
247///
248/// The purpose of this signal handler is to primarily:
249///
250/// 1. Flag that our specific signal was received (e.g. store an atomic flag)
251/// 2. Wake up the driver by writing a byte to a pipe
252///
253/// Those two operations should both be async-signal safe.
254fn action(globals: &'static Globals, signal: libc::c_int) {
255 globals.record_event(signal as EventId);
256
257 // Send a wakeup, ignore any errors (anything reasonably possible is
258 // full pipe and then it will wake up anyway).
259 let mut sender = &globals.sender;
260 drop(sender.write(&[1]));
261}
262
263/// Enables this module to receive signal notifications for the `signal`
264/// provided.
265///
266/// This will register the signal handler if it hasn't already been registered,
267/// returning any error along the way if that fails.
268fn signal_enable(signal: SignalKind, handle: &Handle) -> io::Result<()> {
269 let signal = signal.0;
270 if signal < 0 || signal_hook_registry::FORBIDDEN.contains(&signal) {
271 return Err(Error::new(
272 ErrorKind::Other,
273 format!("Refusing to register signal {signal}"),
274 ));
275 }
276
277 // Check that we have a signal driver running
278 handle.check_inner()?;
279
280 let globals = globals();
281 let siginfo = match globals.storage().get(signal as EventId) {
282 Some(slot) => slot,
283 None => return Err(io::Error::new(io::ErrorKind::Other, "signal too large")),
284 };
285 let mut registered = Ok(());
286 siginfo.init.call_once(|| {
287 registered = unsafe {
288 signal_hook_registry::register(signal, move || action(globals, signal)).map(|_| ())
289 };
290 if registered.is_ok() {
291 siginfo.initialized.store(true, Ordering::Relaxed);
292 }
293 });
294 registered?;
295 // If the call_once failed, it won't be retried on the next attempt to register the signal. In
296 // such case it is not run, registered is still `Ok(())`, initialized is still `false`.
297 if siginfo.initialized.load(Ordering::Relaxed) {
298 Ok(())
299 } else {
300 Err(Error::new(
301 ErrorKind::Other,
302 "Failed to register signal handler",
303 ))
304 }
305}
306
307/// An listener for receiving a particular type of OS signal.
308///
309/// The listener can be turned into a `Stream` using [`SignalStream`].
310///
311/// [`SignalStream`]: https://docs.rs/tokio-stream/latest/tokio_stream/wrappers/struct.SignalStream.html
312///
313/// In general signal handling on Unix is a pretty tricky topic, and this
314/// structure is no exception! There are some important limitations to keep in
315/// mind when using `Signal` streams:
316///
317/// * Signals handling in Unix already necessitates coalescing signals
318/// together sometimes. This `Signal` stream is also no exception here in
319/// that it will also coalesce signals. That is, even if the signal handler
320/// for this process runs multiple times, the `Signal` stream may only return
321/// one signal notification. Specifically, before `poll` is called, all
322/// signal notifications are coalesced into one item returned from `poll`.
323/// Once `poll` has been called, however, a further signal is guaranteed to
324/// be yielded as an item.
325///
326/// Put another way, any element pulled off the returned listener corresponds to
327/// *at least one* signal, but possibly more.
328///
329/// * Signal handling in general is relatively inefficient. Although some
330/// improvements are possible in this crate, it's recommended to not plan on
331/// having millions of signal channels open.
332///
333/// If you've got any questions about this feel free to open an issue on the
334/// repo! New approaches to alleviate some of these limitations are always
335/// appreciated!
336///
337/// # Caveats
338///
339/// The first time that a `Signal` instance is registered for a particular
340/// signal kind, an OS signal-handler is installed which replaces the default
341/// platform behavior when that signal is received, **for the duration of the
342/// entire process**.
343///
344/// For example, Unix systems will terminate a process by default when it
345/// receives `SIGINT`. But, when a `Signal` instance is created to listen for
346/// this signal, the next `SIGINT` that arrives will be translated to a stream
347/// event, and the process will continue to execute. **Even if this `Signal`
348/// instance is dropped, subsequent `SIGINT` deliveries will end up captured by
349/// Tokio, and the default platform behavior will NOT be reset**.
350///
351/// Thus, applications should take care to ensure the expected signal behavior
352/// occurs as expected after listening for specific signals.
353///
354/// # Examples
355///
356/// Wait for `SIGHUP`
357///
358/// ```rust,no_run
359/// use tokio::signal::unix::{signal, SignalKind};
360///
361/// #[tokio::main]
362/// async fn main() -> Result<(), Box<dyn std::error::Error>> {
363/// // An infinite stream of hangup signals.
364/// let mut sig = signal(SignalKind::hangup())?;
365///
366/// // Print whenever a HUP signal is received
367/// loop {
368/// sig.recv().await;
369/// println!("got signal HUP");
370/// }
371/// }
372/// ```
373#[must_use = "streams do nothing unless polled"]
374#[derive(Debug)]
375pub struct Signal {
376 inner: RxFuture,
377}
378
379/// Creates a new listener which will receive notifications when the current
380/// process receives the specified signal `kind`.
381///
382/// This function will create a new stream which binds to the default reactor.
383/// The `Signal` stream is an infinite stream which will receive
384/// notifications whenever a signal is received. More documentation can be
385/// found on `Signal` itself, but to reiterate:
386///
387/// * Signals may be coalesced beyond what the kernel already does.
388/// * Once a signal handler is registered with the process the underlying
389/// libc signal handler is never unregistered.
390///
391/// A `Signal` stream can be created for a particular signal number
392/// multiple times. When a signal is received then all the associated
393/// channels will receive the signal notification.
394///
395/// # Errors
396///
397/// * If the lower-level C functions fail for some reason.
398/// * If the previous initialization of this specific signal failed.
399/// * If the signal is one of
400/// [`signal_hook::FORBIDDEN`](fn@signal_hook_registry::register#panics)
401///
402/// # Panics
403///
404/// This function panics if there is no current reactor set, or if the `rt`
405/// feature flag is not enabled.
406#[track_caller]
407pub fn signal(kind: SignalKind) -> io::Result<Signal> {
408 let handle = scheduler::Handle::current();
409 let rx = signal_with_handle(kind, handle.driver().signal())?;
410
411 Ok(Signal {
412 inner: RxFuture::new(rx),
413 })
414}
415
416pub(crate) fn signal_with_handle(
417 kind: SignalKind,
418 handle: &Handle,
419) -> io::Result<watch::Receiver<()>> {
420 // Turn the signal delivery on once we are ready for it
421 signal_enable(kind, handle)?;
422
423 Ok(globals().register_listener(kind.0 as EventId))
424}
425
426impl Signal {
427 /// Receives the next signal notification event.
428 ///
429 /// `None` is returned if no more events can be received by this stream.
430 ///
431 /// # Cancel safety
432 ///
433 /// This method is cancel safe. If you use it as the event in a
434 /// [`tokio::select!`](crate::select) statement and some other branch
435 /// completes first, then it is guaranteed that no signal is lost.
436 ///
437 /// # Examples
438 ///
439 /// Wait for `SIGHUP`
440 ///
441 /// ```rust,no_run
442 /// use tokio::signal::unix::{signal, SignalKind};
443 ///
444 /// #[tokio::main]
445 /// async fn main() -> Result<(), Box<dyn std::error::Error>> {
446 /// // An infinite stream of hangup signals.
447 /// let mut stream = signal(SignalKind::hangup())?;
448 ///
449 /// // Print whenever a HUP signal is received
450 /// loop {
451 /// stream.recv().await;
452 /// println!("got signal HUP");
453 /// }
454 /// }
455 /// ```
456 pub async fn recv(&mut self) -> Option<()> {
457 self.inner.recv().await
458 }
459
460 /// Polls to receive the next signal notification event, outside of an
461 /// `async` context.
462 ///
463 /// This method returns:
464 ///
465 /// * `Poll::Pending` if no signals are available but the channel is not
466 /// closed.
467 /// * `Poll::Ready(Some(()))` if a signal is available.
468 /// * `Poll::Ready(None)` if the channel has been closed and all signals
469 /// sent before it was closed have been received.
470 ///
471 /// # Examples
472 ///
473 /// Polling from a manually implemented future
474 ///
475 /// ```rust,no_run
476 /// use std::pin::Pin;
477 /// use std::future::Future;
478 /// use std::task::{Context, Poll};
479 /// use tokio::signal::unix::Signal;
480 ///
481 /// struct MyFuture {
482 /// signal: Signal,
483 /// }
484 ///
485 /// impl Future for MyFuture {
486 /// type Output = Option<()>;
487 ///
488 /// fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
489 /// println!("polling MyFuture");
490 /// self.signal.poll_recv(cx)
491 /// }
492 /// }
493 /// ```
494 pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<()>> {
495 self.inner.poll_recv(cx)
496 }
497}
498
499// Work around for abstracting streams internally
500#[cfg(feature = "process")]
501pub(crate) trait InternalStream {
502 fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<()>>;
503}
504
505#[cfg(feature = "process")]
506impl InternalStream for Signal {
507 fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<()>> {
508 self.poll_recv(cx)
509 }
510}
511
512pub(crate) fn ctrl_c() -> io::Result<Signal> {
513 signal(SignalKind::interrupt())
514}
515
516#[cfg(all(test, not(loom)))]
517mod tests {
518 use super::*;
519
520 #[test]
521 fn signal_enable_error_on_invalid_input() {
522 signal_enable(SignalKind::from_raw(-1), &Handle::default()).unwrap_err();
523 }
524
525 #[test]
526 fn signal_enable_error_on_forbidden_input() {
527 signal_enable(
528 SignalKind::from_raw(signal_hook_registry::FORBIDDEN[0]),
529 &Handle::default(),
530 )
531 .unwrap_err();
532 }
533
534 #[test]
535 fn from_c_int() {
536 assert_eq!(SignalKind::from(2), SignalKind::interrupt());
537 }
538
539 #[test]
540 fn into_c_int() {
541 let value: std::os::raw::c_int = SignalKind::interrupt().into();
542 assert_eq!(value, libc::SIGINT as _);
543 }
544}